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Purpose of normalization and harmonization

• Impact of technical variability:
• Brain volume changes
• Regional cortical thickness
• Voxel-based morphometry
• SUVR quantification 

• Total variability:
• Biological variability (desired signal)
• Technical variability (unwanted signal)
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Break down variability (ANOVA point of view)
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Solutions: Remove technical variability 

• Increment pipeline: explainable for every step
1) Intensity inhomogeneity correction 

• Result no bias field
2) Alignment:

• resulting same orientation 
3) Registration: 

• resulting same structure
4) Harmonization: 

• resulting same histogram, intensity scale, resolution

• End-to-end model: black box, explainable when all 
LEGO are clearly defined

1) Deep model (e.g., GAN)
• resulting no bias field, same orientation,,  structure, 

histogram, intensity scale, resolution at once
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Structure homogenization - Intensity-preserved (MR-specific)

(Recap) MR-to-MR Image registration algorithm Evolved to match the diffeomorphism assumption from small to large deformation

SPM8 Normalization (Ashburner et al, 2005) Unified image registration and partitioning algorithm,  which is mainly an EM algorithm 
between warpping (bias field and deformations) and classification (Mixture of 
Gaussians parameter)

Original Shoot (Beg et al, 2005) LDDMM + Geodesic Shoot that (unidirectionally) deforms an image with a velocity 
vector field with geodesic conservation of momentum. 

SPM8 Dartel (Ashburner, 2007) Stationary Velocity Field

SPM12 Shoot (Ashburner and Klöppel, 2010) The efficient optimization scheme via Gauss–Newton optimization

ANTs SyN (Avants et al, 2008) LDDMM framework with bidirectionally formulates the velocity field with constant arc 
length constraint

Template-generating algorithm Natural extension from the pairwise to group registration

Original Shoot (Beg et al, 2006) Naturally extends LDDMM + Geodesic Shoot from single velocity vector fields to 
average velocity vector fields 

SPM12 Shoot (Ashburner and Friston, 2009) EM algorithm, by alternating between estimating deformation parameters by multiple 
tissues with softmax and computing the template.

ANTs SyGN (Avants et al, 2010) Naturally extends SyN from single image forces to average forces 6



Structure homogenization - Intensity-preserved (PET-specific)

PET-to-PET Image registration algorithm 

Free-From Deformation (Rueckert et al, 1999) Optimize the Normalized Mutual Information (NMI) to generate the 
deformation field with cubic B-splines and a control-point spacing.

Template-generating algorithm (more detail on slide 8, 9)

MR-base template Standard pipeline (The automatic parcellation and quantification of PiB 
PET images without any structural information is a complex problem)

mean template (Edison et al. 2013) All PET images were non-linearly spatially normalised to a PIB PET 
template

Adaptive template (Fripp et al, 2008) Generate the subject-specific atlas by optimizing the weight between PiB 
+ and - via maximizing the NMI between the adaptive atlas and the target.

Multi template (Bourgeat et al., 2012) Reduce the training set to a 2D sample space with manifold embedding, 
then find the K nearest neighbors of a PET image to compute the 
consensus parcellations and masks, therefore the subject-specific atlas.

Deep learning approach (e.g., Kang et al. 2018) Typical GAN style transfer
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PET adaptive template
Comparison of MR-less PiB SUVR quantification methods (Bourgeat et al. 2015)

The flowchart of the four SUVR quantification methods

The Bland-Altman plots of three less-MR SUVR quantification methods 
(by columns) compared to the MR-based quantification as the reference.

• In general, adaptive template seems to be a better 
choice by considering the trade-off between 
implementation difficulty and performance.

8



PET adaptive template
Adaptive template generation for amyloid PET using a deep learning approach (Kang et al. 2018)

• An application of GAN style transfer for 
PET spatial normalization;

• A black-box that spatially normalizes 
original PET to normalized PET image;

• may violate the diffeomorphism 
(differentiable manifold with 
differentiable inverse) and symmetry 
mapping;

• Many potential improvements.
• Mode (manifold in geometry) collapse 

problem : need regularize on diversity

Generative Adversarial Network (GAN) framework

Objective function:

9Mode collapse problem



Intensity homogenization - Structure-preserved (Harmonization) 

Histogram matching

white stripe (Shinohara et al 2014) tissue-specific histogram normalization

Regression Assuming same structure and resolution, mainly focus on intensity normalization

location (mean) and scale (variance) adjustment Voxel-wise regression that models the terms for additive and multiplicative scanner 
effects of scanner i for voxel g.

ComBat (Johnson et al, 2007), 
modified ComBat (Da-ano et al, 2020)

Developed upon the location/scale adjustment, with empirical Bayes estimation that 
assumes the parametric forms for prior distributions on the scanner effect parameters to 
be Normal and Inverse Gamma distribution

Hybrid framework

RAVEL (Fortin et al, 2016) identify patterns of variation in the control voxels across subjects (regression), and then 
assess the degree to which this variation explains the brain-wide intensity distributions 
(truncated singular value decomposition)

Deep learning Assuming same structure, suitable on intensity normalization and potential for super-
resolution reconstruction

DeepHarmony (Dewey et al, 2019) deep fully-convolutional neural network based on the U-Net architecture for contrast 
harmonization

MISPEL (Torbati et al, 2021) Two-step training: (1) learn the structural information (embeddings) by training both 
encoder and decoder  (2) Intensity normalization with fixed structural information by 
training only the decoder . 10



Intensity homogenization – Method comparison

• Both DeepHarmony and MISPEL are black boxes, 
but MISPEL is more explainable.

• Location and scale adjustment model (e.g., 
ComBat) 
• models the voxel-intensity as mean and scanner effects 

as residual,
• then standardize scans by removing scanner-specific 

residual

• One-step, single U-net (i.e., DeepHarmony) 
• Taking account of spatial dependency into 

normalization, but not necessarily fix the structure
• Feature extraction via convolution, then reconstruction 

via deconvolution.

• Two-step, multiple U-net (i.e., MISPEL) 
• share same philosophy as location and scale adjustment 

model that explicitly models the scanner effect, and 
with considering spatial dependency of voxel

• fixes the mean voxel-intensity for each scanner 
(structural info) then modify on variance (scanner effect) 
at voxel level 
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MISPEL training schema: one U-Net assigned for each Scanner

DeepHarmony training schema: a single U-net

Location and scale adjustment model



Final thought - Diagnosis for big system

Source: Debugging ML Models and Error Analysis, 
Stanford CS229, Autumn 2018 : Machine Learning

• Error analysis
• Understand functionality of sub-elements 

and entire pipeline
• Pin-point the element that gives most 

improvement
• Might help to find consensus for the 

pipeline standard.
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